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Challenges for pose estimation
in the laboratory

«animals have highly different bodies
(i.e., can’t leverage a skeleton or pose
prior across all species)

*not practical for individuals to label
>10,000 frames for training (i.e., human
benchmark dataset sizes)

fast real-time video analysis

*Multi-animal tracking, where animals
can look truly identical

*Robust, plug-N-play solutions?

= Mathis & Mathis 2020 “Jojo Schultz
Current Opinion in Neurobiology
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() Colab_DEMO_mouse_openfield.ipynb
File Edit View Insert Runtime Tools Help

Q Commands + Code + Text Copy to Drive

=+ DeeplLabCut 3.0 Toolbox - Colab Demo on TopView Mouse Data

@ .
Some useful links:
< « DeepLabCut's GitHub: github.com/DeepLabCut/DeepLabCut
https://colab.research.google.com/g )

ithub/DeeplLabCut/DeeplLabCut/blo o
b/master/examples/COLAB/COLAB o
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Demo supporting: Nath*, Mathis* et al. *Using DeepLabCut for markerless3D pose estimation during behavior across species. Nature

Protocols, 2019
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Keypoint-MoSeq: parsing behavior by linking point
tracking to pose dynamics
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Keypoint tracking algorithms can flexibly quantify animal movement from videos obtained in a wide variety of
settings. However, it remains unclear how to parse continuous keypoint data into discrete actions. This
challenge is particularly acute because keypoint data are susceptible to high-frequency jitter that clustering
algorithms can mistake for transitions between actions. Here we present keypoint-MoSeq, a machine
learning-based platform for identifying behavioral modules (‘syllables’) from keypoint data without human
supervision. Keypoint-MoSeq uses a generative model to distinguish keypoint noise from behavior, enabling it
to identify syllables whose boundaries correspond to natural sub-second discontinuities in pose dynamics.
Keypoint-MoSeq outperforms commonly used alternative clustering methods at identifying these transitions, at
capturing correlations between neural activity and behavior and at classifying either solitary or social behaviors
in accordance with human annotations. Keypoint-MoSeq also works in multiple species and generalizes beyond
the syllable timescale, identifying fast sniff-aligned movements in mice and a spectrum of oscillatory behaviors
in fruit flies. Keypoint-MoSeq, therefore, renders accessible the modular structure of behavior through standard

video recordings.



Figure 1: Keynoint trajectories exhibit sub-second
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Explain how Motion Sequencing
(MoSeq) works.

It uses unsupervised ML to transform inputs (3D
depth video or keypoints) into a set of behavioral
motifs (=syllables) by searching for discontinuity in
the behavioral data at a customizable timescale.

Panel (b:d): What weakness of MoSeq
is demonstrated here?

Depth MoSeq: works well but difficult to deploy,
high reflection sensitivity, limited temporal
resolution.

Keypoints MoSeq: inability to differentiate noise
(especially keypoint jitter artifact) from behavior
when presented with keypoint data.



Flgure 2: Hierarchical modeling of keypoint trajectories

decouples noise from pose dynamics
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How is keypoint-MoSeq addressing
this limitation? Explain the model’s
architecture.

Builds on SLDS
Hierarchical levels to form a dynamical system:
- Discrete syllable state space (state z_t)
- Low-dimensional pose space (pose x_t)
- Location (centroid) information (v_t)
- Heading information (h_t)
Output: keypoints coordinate (y_tk)

If jitter, it can be attributed to noise (s_tk).



Figure 2: Hierarchical modeling of keynoint trajectories
decouples noise from pose dynamics
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How does it affect the the behavioral
syllables transition?

Syllable transitions overlap more strongly with
change points in pose as well as with syllable
transition from depth MoSeq. Distribution duration
overall longer.
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How does kpts-MoSeq
compare to existing methods?

Behavioral states overall longer, and
transitions aligned better with keypoints
change score.



Flgure 3: Keynolnt-MoSeq captures
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Why are they looking so closely at kinematic measurements to evaluate their method?

Here, they show that it is accurately capturing changes in kinematic, which provides a reason why it more clearly
identify behavioral boundaries: it represents the temporal structure of the behavior differently from the others.



Fgur o 4: Koypoint-MoSeq syilable transitions align with fluctuations In striatal
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How does dopamine fluctuate around
syllables transition of different models ?

Dopamine fluctuation aligns best to MoSeq and
Keypoint-MoSeq transitions whereas the alignment to
B-SOiD and VAME shows a lot of variability.

There is an increase in dopamine after a pause and a
decrease around a dart shown for syllables identified by
both Keypoint-MoSeq and VAME but Keypoint-MoSeq
transition alignment shows dopamine dynamics that
are more time-locked to the onset of the syllable.
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There is no difference in the timing of the
What difference in tracking appears when switching  transition but more fine grained distinctions

from 3D vs 2D data with Keypoint-MoSeq ? in behavior (higher number of syllables per
behavior like turning of rearing).



Flgure 6 : Keypoint-MoSeq segments hehavior at multiple imescales
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Why is Keypoint-MoSeq now picking up

) Median duration of syllables is decided by the
on such fast behavior changes ?

stickiness hyperparameter.

How does respiration correlates with Nose velocity is highly aligned with respiration, and
her behavi 5 some motifs are respiration coupled (they aligned
other behaviors : with transition in respiration state).



Keypoint jitter can be disentangled from behavior with a switching linear dynamical

system
This keypoint-MoSeq model captures the temporal structure of behavior

Syllable transitions align with striatal dopamine fluctuations
Keypoint-MoSeq is generalizable to setups, different behaviors, different species and

different timescales



What did we learn? What questions do we have?

What points do they make in the discussion?
Is anything unclear?

What would you do next?

Generalize to multi-animals tracking to be able to better characterize and track different social behaviors:
https://keypoint-moseq.readthedocs.io/en/latest/FAQs.html#multiple-animals.

Get more insights in neural activity during spontaneous behavior and how it aligns to syllable transition and
for which timescales => Neuropixels implants or fiber photometry of other neuromodulators

Investigate the hierarchical nature of behavior: “simultaneously analyze behavior across multiple timescales
or explicitly represent the hierarchical nesting of behavior motifs”: hBehaveMAE
(https://www.biorxiv.org/content/10.1101/2024.08.06.606796v1)

Unsupervised labelling of behavioral syllables with LLMs?



https://keypoint-moseq.readthedocs.io/en/latest/FAQs.html#multiple-animals
https://www.biorxiv.org/content/10.1101/2024.08.06.606796v1

